P P SAVANI UNIVERSITY

Third Semester of Diploma Examination December 2022

IDME2020 Thermodynamics

23.11.2022, Wednesday Time: 10:00 a.m. To 12:30 p.m.

Maximum Marks: 60

Instructions:

- 1. The question paper comprises of two sections.
- 2. Section I and II must be attempted in separate answer sheets.
- 3. Make suitable assumptions and draw neat figures wherever required.4. Use of scientific calculator is allowed.

SE	CT	TO	M		Ŧ
JL	UI	10	1.4	_	1

	SECTION - I			
Q-1	Define (Any Five)	[05]	CO	BTL
(i)	Enthalpy		1	1
(ii)	Entropy	/	1	1
(iii)	Heat		1	1
(iv)	Work		1	1
(v)	Exergy		2	2
(vi)	PMM1		2	2
(vii)	PMM2		2	2
Q-2(a)	What are the limitation of 1st law of thermodynamics?	[05]	2	2
Q-2(b)	Define and explain 1st law of thermodynamics.	[05]	2	2
	OR .	[oo]	-	
Q-2(a)	State 1st law of thermodynamics for no flow process.	[05]	2	2
Q-2(b)	State 1st law of thermodynamics for flow process.	[05]	2	2
Q-3(a)	What is Clausius inequality?	[05]	2	2
		[oo]	_	-
Q-3(b)	State and explain PMM3.	[05]	2	2
	OR .			
	OK .			
Q-3(a)	What are the properties of entropy?	[05]	4	2
0 0 0 1				
Q-3(b)	State and explain 3 rd law of thermodynamics.	[05]	4	2
Q-4	Attempt anyone.	[05]		
(i)	What is Rankine cycle? Derive the expression of thermal efficiency of Rankine		3	2
(II)	cycle.			
(ii)	Draw PV and TS diagram of Dual cycle and derive an expression for thermal		3	2
	efficiency of dual cycle.			
0.1	SECTION - II			
Q-1	MCQ/Short Question/Fill in the Blanks (Any Five)	[05]		
(i)	Explain Avogadro's law.		1	1
(ii)	Define energy.		1	1
(iii)	Write the similarities and differences of heat energy and work energy.		1	1
(iv)	Mention Steady Flow Energy Equation.		2	2
(v)	Explain cut-off ratio		3	2
(vi)	Define process and cycle.		3	2
(vii)	Define air standard efficiency.		3	2
Q - 2 (a)	State limitations of first law of thermodynamics.	[05]	2	2
Q-2 (b)	Write down fundamental laws for ideal gas.	[05]	2	2
			Page	1 of 2

	OR			
Q-2(a)	Give the difference between the Path function and the point function.	[05]	2	2
Q-2(b)	Write a Short Note on the Steady Flow Energy Equation.	[05]	2	2
Q - 3 (a)	One Carnot engine receives 1200 KJ/min heat energy from the reservoir at 350°C temperature and rejects heat energy to the sink at 25°C temperature. Find thermal efficiency and work done.	[05]	3	2
Q-3(b)	Explain. 1] Specific heat at constant pressure (C_p) 2] specific heat at constant volume (C_v) . OR	[05]	3	2
Q-3(a)	Explain the C.O.P of the Refrigerator and heat pump and show their relationship	[05]	3	2
Q-3 (b)	In the diesel cycle, the compression ratio is 16, the pressure and temperature at beginning of the compression stroke are 1 bar & 20°C respectively and the	[05]	3	2
	maximum temperature of the cycle is 1430°C. Find the thermal efficiency of the cycle			
Q-4	Attempt any one/two.	[05]		
(i)	Explain the reversible process.		4	2
(ii)	Differentiate between the Otto cycle and the Diesel cycle ******		3	2

Level of Bloom's Revised Taxonomy in Assessment

: Course Outcome Number

CO

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

BTL : Blooms Taxonomy Level